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1 – Automata theory

An automaton A is a set Q of states with a non-deterministic right
action Q × A∗ → P(Q), a set of initial states I ⊆ Q, and a set of
final states F ⊆ Q

1start 2

a
a

b

L(A) = {w ∈ A∗ | Iw ∩ F 6= ∅} = (a∗(ab)∗)∗

Computational difficulty is studied via language classes, e.g.

RegA = {L ⊆ A∗ | ∃A L = L(A)} ⊆ P(A∗)

Notice this is a Boolean algebra with operators (operations)
(BAOs)

KL ⊆ M ⇐⇒ L ⊆ K\M ⇐⇒ K ⊆ M/L



1 – Jónsson-Tarski 1951 and 1952 on BAOs

Canonical extension, Jónsson-Tarski duality, and canonicity for
positive varieties led to my contribution to [G-Grigorieff-Pin 2008]
and [G 2016]:
a duality between algebras and algebras Certain BAs

with residuation
operations

!
 Topological

algebras based on
Boolean spaces


and generalised Eilenberg-Reiterman theory given by duality(

BAO (DLO) subalgebras
of a given BA

)
!

(
(Ordered) quotients

of the dual of the BA

)

In particular, (RegA, \, /) is dual to Â∗, the profinite completion ofA∗



2 – Equational theories for BAs of languages

Equations arise from the duality between Boolean subalgebras and
quotient spaces

C B ! XC XB

For x , y ∈ XB and L ∈ B define

L � x ≈ y iff L ∈ µx ⇐⇒ L ∈ µy iff x ∈ L̂ ⇐⇒ y ∈ L̂

Then we get a Galois connection P(B)� P(XB × XB) given by

Eq(S) = {(x , y) | ∀L ∈ S L � x ≈ y} for S ⊆ B
Mod(Σ) = {L | ∀(x , y) ∈ Σ L � x ≈ y} for Σ ⊆ XB × XB

Theorem: The Galois closed sets are, respectively, the Boolean
subalgebras of B and the Boolean equivalence relations on XB

For B=RegA and XB= Â∗, the equations are said to be profinite
and the theorem generalises the Eilenberg-Reiterman theory



2 – Example: profinite equations for the star-free languages

A language is Star-free provided it is in the BA closed under
concatenation product generated by the singletons

[Schützenberger 1965] and [McNaughton-Papert 1971]

Star-free = J xω+1 ≈ xωK

Here xω is a profinite term giving the unique idempotent in the
principal closed subsemigroup generated by x

1 x x2 x3

. . .
xk+l = xk

xk+1 xk+2

xk+l−1

1

NB! This makes star-freeness decidable



3 – Beyond regular languages: Boolean circuit complexity

Boolean circuit classes have members that are specified by
sequences of Boolean circuits, one for each input length, that
identify which words of the given length are accepted.

For example, AC0 consists of constant depth and polynomial size
circuit sequences and ACC0, is obtained from AC0 by adding
modular gates.

[Furst, Saxe, and Sipser 1981] separated these two classes:

NP > P > AC . . . > AC2 > AC1 > NL > L > ACC0 > AC0

by showing that the regular language

parity = {w ∈ {0, 1}∗ | w has an odd number of 1’s}

is not in AC0



3 – Logic on words

To each non-empty word w is associated a structure

({0, 1, . . . , |w | − 1}, (aw )a∈A) where aw = {i < |w | | wi = a}

In addition, these structures inherit any predicates on N by

restriction (numerical predicates).

Theorem: [Büchi 1960; Elgot ’61; Trakhtenbrot ’62] MSO[6] = Reg

Meaning that the model classes of monadic second order sentences
in the language augmented by 6 are precisely the languages
recognisable by automata

Theorem: [McNaughton-Papert 1971] FO[6] = Star-Free

(Star-Free = languages generated by the singleton letters using the
Boolean operations and binary concatenation)



3 – Logic on words for circuit classes

As with classes of regular languages, many computational
complexity classes have been given characterisations as model
classes of appropriate logic fragments on finite words

[Immerman 1999]

For example,

AC0 = FO[N ] ACC0 = (FO + MOD)[N ] TC0 = MAJ[N ]

N = all predicates on the positions of a word
FO= first-order logic
MOD and MAJ= modular and majority quantifiers, respectively.

The presence of arbitrary (numerical) predicates, and of the
majority quantifier is what brings one far beyond the scope of the
profinite algebraic theory of regular languages.



3 – Connection to algebraic automata theory

parity is a regular language, so the separation result of Furst,
Saxe, and Sipser is witnessed at this level.

FO[N ] ∩ Reg = languages given by quasi-aperiodic stamps

= J (xω−1y)ω+1 = (xω−1y)ω

for x , y words of the same lengthK

[Barington, Compton, Straubing, Thérien 1992]
[Kunc 2003]

In the regular setting, the algebraic theory of monoids, including
decomposition results in terms of semidirect products, plays a
central rôle.
We want to generalise the algebraic theory to treat classes of
languages that are not necessarily regular



The dual space of a powerset

Let S be an infinite set, then P(S) is a Boolean algebra

St(P(S)):

I (principal filters) For each s ∈ S

µs = {T ⊆ S | s ∈ T} is an ultrafilter of P(S)

I (free ultrafilters) All ultrafilters extending the Frechet filter

F = {T ⊆ S | S − T is finite}

(these are all non-constructive)

Theorem: S ↪→ St(P(S)) is the Stone-Čech compactification of S
equipped with the discrete topology

We denote it β(S)



4 – The rôle of monoids

The reason monoids enter the picture, is that most classes of
interest are closed under the quotient operations, that is, if L ⊆ A∗

is in the class, then all of

B(L)= the BA generated by the languages u−1Lv−1 for u, v ∈ A∗

is contained in the class, where

u−1Lv−1 = {w ∈ A∗ | uwv ∈ L}

This is a Bi-action of A∗ on B(L), Γuv : K 7→ u−1Kv−1, for all
u, v ∈ A∗

Duality gives us

P(A∗) P(A∗) β(A∗) β(A∗)

B(L) B(L) XL XL

u−1( )v−1 β(u ( ) v)

Γuv γuv



The syntactic space of a language

For L ⊆ A∗, let

B(L) := 〈u−1Lv−1 | u, v ∈ A∗〉BA

Since the embedding B(L) ↪→ P(A∗) preserves the bi-action of A∗,
dually, we obtain

A∗ β(A∗) β(A∗)

ML XL XL

ψL

β(u ( ) v)

γuv

where ML is the image of A∗ in XL.

It is not hard to see that since the quotient map is a morphism of
biactions, ML carries a monoid structure. It is what is known in
language theory as the syntactic monoid of L



4 – Boolean spaces with internal monoids

Let L ⊆ A∗. Then ι : ML ↪→ XL satisfies:

I XL is a Boolean Stone space

I ML is a monoid

I XL is equipped with a continuous bi-action of ML

I The map ι satisfies:
I ι is injective
I the image of ι is dense in XL

I ι is a morphism of sets with bi-actions of ML

We denote such an object by (XL,ML) and call it a Boolean space
with an internal monoid or BM (or BiM) for short

NB! Sometimes it is convenient to drop the requirement that ι is
injective in the definition of BMs



4 – Recognition

Let (X ,M) be a BM, a BM morphism

ψ : (β(A∗),A∗)→ (X ,M)

is a commuting diagram

A∗ β(A∗)

M X

ψ ψ′

ι

NB! ψ′ is uniquely determined by ψ

Now ψ recognises L⊆A∗ provided (ι ◦ ψ)−1(C ) = L for some
clopen C ⊆ X

Theorem: [G-Petrişan-Reggio 2016]
ψ recognises L iff ψL : (β(A∗),A∗)→ (XL,ML) factors through ψ



4 – Example: The syntactic space of majority

Let A = {a, b} and L = {w ∈ A∗ | |w |a > |w |b} where |w |a is the
number of a’s in w . Then

hL : A∗ −→ Z,w 7→ |w |a − |w |b

is the syntactic morphism of L and Z+ is the syntactic image, i.e.
L = h−1

L (Z+) and

B(L) ∼= 〈Z+ + k | k ∈ Z〉BA

= {K | K ∩ Z+,K ∩ Z− are each finite or cofinite}

The dual space of B(L) is Z+∞
−∞ = Z ∪ {−∞,+∞}, where

µ+∞ = {K | K4Z+ is finite} and µ−∞ = {K | K4Z− is finite}

with topology making it the ‘two point compactification’ of Z



Equations for majority

The dual of e : B(L) ↪→ P(Z) is

βe : β(Z) −→ Z+∞
−∞, w 7→ w for w ∈ A∗

For µ ∈ β(Z)− Z

µ 7→
{

+∞ if majority ∈ µ
−∞ otherwise

Proposition: B(L) is characterised relative to P(Z) by the equations

Σ = {µ ≈ µ+ 1 | µ ∈ β(Z)− Z}

For a proof, see the complexity column of SIGLOG News, April 2017
(a survey article written jointly with Andreas Krebs)



5 – Adding a layer of existential quantifier

Let ϕ(x) be a formula of the logic on words with one free variable

Problem: Given a recogniser for L = Mod(ϕ(x)), construct a
recogniser for L∃ = Mod(∃xϕ(x))

NB! L consists of x-models based on words, i.e., elements of

A∗ ⊗ N = {(w , i) | w ∈ A∗ and i 6 |w |}

We can embed these x-models in the free monoid (A× 2)∗ via

(w , i) 7→ w i given by (w i )j =

{
(wj , 0) if j 6= i
(wj , 1) if j = i

We say that ψ : (β((A× 2)∗), (A× 2)∗)→ (X ,M) recognises
Mod(ϕ(x)) if it is the preimage of a clopen of X under the
composition

A∗ ⊗ N ↪→ (A× 2)∗
ψ−→ M ↪→ X



The Vietoris space

Let V(X ) be the Vietoris space of X . That is,

V(X ) = {C ⊆ X | C is closed in X}

with the topology generated by

♦U = {C | C ∩ U 6= ∅} and �U = {C | C ⊆ U} for U ∈ O(X )

NB! Pfin(M) ↪→ V(X ) with dense image

V(X ) recognises the quantified languages, but not as a monoid



A recogniser for L∃ from one for L

Definition: ♦(X ,M) = (V(X )× X ,Pfin(M)×M) with left action

(F ,m)(C , x) = (Fx ∪mC ,mx)

= ({m′x | m′ ∈ F} ∪ {mx ′ | x ′ ∈ C},mx)

Theorem: [G-Petrişan-Reggio 2016]
If ψ : (β((A× 2)∗), (A× 2)∗)→ (X ,M) recognises Mod(ϕ(x)),
then

♦ψ : (β(A∗),A∗)→ ♦(X ,M)

w 7→ ({ψ(w i ) | i 6 |w |}, ψ(w))

recognises Mod(∃ϕ(x))

Go to Luca’s talk on Tuesday for more on a generalisation of this!
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